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Alcohol and Cocaine Interactions in Humans1

ABSTRACT
The effects of I 00 mg of intranasal cocaine (COC) in acute
alcohol intoxication (1 g/kg) was assessed in nine experienced
and non-dependent healthy volunteers in a double-blind, con-
trolled, randomized, cross-over clinical trial. Alcohol alone im-
paired psychomotor pertormance, whereas COG alone produced
subjective effects related to euphoria and well-being, improved
the reaction time and increased heart rate and blood pressure.
The combination of COC and alcohol induced a nonsignificant
decrease in the subjective feelings of drunkenness, an increase
in COC-induced euphoria, a significant improvement in alcohol-
related changes in psychomotor performance and a marked

increase in heart rate. Subjects experienced subjective and
performance effects that could be self-interpreted as more pleas-
ant compared to the effects of alcohol alone. When alcohol was
given simultaneously, COC plasma levels were higher (possibly
as a result of an inhibition of hepatic metabolism of COC pro-
duced by alcohol), norcocaine plasma levels almost doubled and
cocaethylene was detected in plasma, so that its basic pharma-
cokinetic profile could be described. The simultaneous use of
both drugs produced changes in heart rate and blood pressure
that could increase the risk of cardiovascular toxicity associated
with the use of COG.

The combined cocaine-ethanol abuse is a very prevalent
problem in Europe and the United States (Grant and Hartford,

1990; Cami and Barrio, 1993). In forensic studies, both drugs

are frequently identified in biological samples from fatally
injured drivers (Budd et aL, 1989; Marzuk et at., 1990). The

pharmacologic effects of the combination of COC and alcohol
have been studied in different animal species and behavioral
models with controversial results. Two studies using laboratory

rats reported an increase in the sedative effect of alcohol (Rech

et aL, 1976; Misra et aL, 1989), whereas in two other experi-

ments, ethanol potentiated the stimulant actions of COC (As-
ton-Jones et aL, 1984; Masur et at., 1989).

A metabolite of COC, CE-ethyl ester of benzoylecgonine or
ethylcocaine, has been reported in individuals using COC and
ethanol concurrently (Rafla and Epstein, 1979; Jatlow et at.,

1991). It has been shown that CE potently inhibits presynaptic

dopamine uptake in vitro (Hearn et aL, 1991) and effectively
substitutes for COC in a drug discrimination protocol in rats
(Woodward et at., 1991). In healthy volunteers, the combination

of ethanol and COC produced greater increases in heart rate

and blood pressure than that observed after COC alone (Foltin
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and Fischman, 1989). However, no published data exist on the

effects of the combination of alcohol and COC on subjective,

performance measures or on the precise mechanisms involved
in the pharmacologic interactions of these two drugs. This
information may be relevant when determining toxicologic

consequences of the simultaneous use of COC and alcohol.
The present study was designed to assess the effects of COC

in acute alcohol intoxication by evaluating subjective effects,
changes in heart rate and blood pressure, psychomotor perform-
ance tasks and the pharmacokinetics and metabolic profile of

these drugs.

Methods

Subjects. Subjects were recruited by “word of mouth” and notices
posted on the bulletin boards at the University. Eligibility criteria

required the recreational use of COC by the intranasal route (on at
least six occasions during the 3 months before participation in the
study), a daily alcohol consumption ofbetween 30 and 60 g and previous

experiences in acute alcohol intoxication.
Nine healthy male volunteers were selected and paid for their par-

ticipation in the study. The mean age and body weight were 27 years
(range 22-30) and 66.6 kg (range 55.5-79.7), respectively. Their average
consumption of alcohol was 40 g/day and of COC use by the intranasal
route, twice per month in the previous year. All but two subjects were

smokers. None had a history of drug dependence or i.v. drug use.

Subjects were informed they would receive COC, alcohol or placebo in
different combinations. Each subject passed a physical examination
and a laboratory screening. A signed informed consent was also pro-
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vided by all participants. The study was approved by the Ethical

Committee of our institution and was authorized by the Ministry of
Health (“Direcci#{243}n General de Farmacia y Productos Sanitarios” 87/

334).

Study design. Subjects participated as outpatients in seven sessions
in which the same doses and preparations of COC and alcohol were

used. In each session they drank a beverage containing alcohol or its
placebo, and snorted a powder containing COC or its placebo. After a
washout period of 72 hr, each subject was taken to a quiet room at the
same time each morning. Sessions lasted 8 hr, throughout which time

subjects remained seated except for visits to the bathroom. Two hours
after the start of each session subjects had a light breakfast. Tobacco

smoking was not permitted during the first 2 hr of the session.

Three training sessions were carried out to familiarize the volunteers
with testing procedures and to assess their tolerance to the drugs.

During the first sesSion they received both placebos and in the following
two sessions, COC or alcohol were given at random. Results from the
training sessions are not included.

Four study sessions were carried out during which different combi-
nations of drugs were given in a double-blind fashion. Combinations

were as follows: placebo snorted/alcohol oral (alcohol condition), COC
snorted/placebo oral (COC condition), COC snorted/alcohol oral (drug
combination condition) and placebo snorted/placebo oral (placebo).
The sequences of treatment were randomized using a 4 X 4 latin square

cross-over design.
Drugs. COC HC1 (pharmaceutical grade) was provided by the Mm-

istry of Health. COC HC1 in doses of 100 or 5 mg was mixed with

lactose to obtain a total 200 mg of powder for administration. The 5-

mg COC preparation was used as placebo given that it has been reported

that at these doses, blood COC levels are insignificant and subjective

or cardiovascular effects are absent, although a slight numbing sensa-
tion is produced in the nasal mucosa (Javaid et aL, 1978). Subjects

received the powder on a 30 x 15 cm steel plate and prepared their

own two “lines” using a straight-edge razor. When instructed they
inhaled the powder using a straw, one line for each nostril.

Acute alcohol intoxication was induced by the ingestion of vodka
and tonic water containing a total alcohol dose of 1 g/kg. Several drops

of aromatic bitters and lemon juice were added to mask successfully
the placebo drink which contained tonic water only (Cami et at., 1988).

The total volume of liquid was 450 ml. The subjects were given 30 mm

to consume the beverage, drinking 150 ml every 10 mm. When the

drink was finished, the subjects snorted the powder. After this sequence

of administration the peak effect of both drugs on subjective and

psychomotor tasks was obtained at about the same time.

Heart rate and blood pressure. Heart rate and blood pressure
were recorded at -30, 0 (immediately before beverage administration),
14, 28 (before powder snorting), 35, 42, 48, 53, 59, 67, 72, 82, 90, 120,

180, 240, 300, 360, 510 and 1440 mm using a Sentry Automatic Monitor

(Automated Screening Devices, Costs Mesa, CA). For safety reasons,
ECG and pulse were continuously monitored during the first 4 hr of
the session (Hewlett-Packard model 78353B, Palo Alto, CA).

Subjective effects. Subjective effects were measured using a set of
14 different visual analog scales (100 mm) marked at opposite ends

with “not at all” and “extremely.” Subjects described effects in the
following terms: “high,” “drunk,” “any effect,” “good effects,” “bad

effects,” “liking,” “feeling good,” “energetic,” “better performance,”
“worse performance,” “clear-headed,” “content,” “anxious” and

“drowsy.” The visual analog scales were administered at 0 (before

beverage administration), 14, 28, 30 (immediately after powder snort-

ing), 35, 38, 42, 48, 51, 59, 67, 75, 82, 90, 105, 120, 180, 240 and 510

mm.
Psychomotor performance. The psychomotor performance bat-

tery included four different tests which were selected on the basis of
their known sensitivity to the effects of alcohol (Mitchell, 1985; Hind-

march et aL, 1991).

The simple reaction time, a measure of the sensory-motor perform-
ance (Hindmarch, 1980), was assessed using the Vienna Reaction Unit
(PC Vienna System, Schufried, Austria) comprising one colored re-
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sponse button adjacent to a yellow light-emitting diode. Using which-

ever finger they preferred upon illumination of the light, subjects were

asked to remove their finger from a “control” button, and depress the

button adjacent to the light, as quick as possible and then return the
finger to depress the control button until the light was once more

illuminated. The simple reaction time is the sum of two components:

the decision time (time taken to release the control button) and the
motor time (time taken to move the finger and depress the response

button adjacent to the illuminated light). The length of the intervals
during which light stimulus was presented varied during the 50 tests

carried out. Results in milliseconds are expressed as the mean of the

response time to the 50 stimuli.

The critical flicker fusion frequency, an indicator of central nervous

system integration and cortical arousal and fatigability (Hindmarch,
1980; Curran, 1990) was measured in increasing and decreasing modes

during three consecutive cycles (Flicker Fusion Analyzer-PC Vienna
System). During the increasing mode, subjects were required to depress
a response button when a flickering light gave rise to the subjective

sensation of a steady light (from flicker to fusion). In the decreasing

mode, the response was required to be made when a steady light became

a flickering one (from fusion to flicker). Results were expressed in hertz
and presented as the mean of the three cycles for each mode.

The Maddox-Wing device (Clement Clark, London, United King-
dom) was used to measure heterophoria (exophoria). This test provides

an index of the relaxation of the extraocular musculature. It is sensitive
to the effects on the central nervous system of different sedative drugs

(Hannington-Kiff, 1970; Manner et aL, 1987).

The Pauli test, an indicator of central nervous system processing

capacities and concentration ability (Hindmarch, 1980; Patat et aL,

1988), is an arithmetical task that requires the calculation of the sum
of two numbers. It is included in the work performance test series (PC
Vienna System). The numbers appeared in the top and the bottom part

of a video screen and the subject entered the correct response by

pressing a key on a numeric keypad. If the answer was a two-digit

number, the correct answer for this task was the last digit (i.e., 5 + 7

= 12, enter “2”). Subjects were instructed to complete as many sums

as possible. Results were expressed as the number of sums correctly

completed during a 4-mm test.
In each session, the simple reaction time test was administered first

followed by the critical flicker fusion frequency, the Maddox-Wing and
the Pauli tests. The completion of the test battery took around 15 mm.
The subjects completed the battery three times at -30 (before drug

administration), 45 and 90 mm after beverage administration (or 15
and 60 mm after powder snorting). Before taking the tests, subjects

underwent training sessions. They completed the simple reaction time
task on 20 occasions and the critical flicker fusion frequency on five.
The criteria for a stable response in the training for the Pauli test was

a coefficient of variation less than 5% in the number of correct

responses in five consecutive trials when at least 20 had been per-

formed.
Blood sampling. An indwelling intravenous catheter was inserted

into a subcutaneous vein in the forearm of the non-dominant arm and
normal saline solution was infused at a rate of 20 ml/hr. Blood samples

(2 ml) were obtained for analysis of alcohol at 0, 14, 28, 42, 59, 72, 87,

120, 180, 240, 300, 360, 510 and 1440 mm after beverage administration.

The whole blood was collected in a plastic tube over 25 Ml of sodium

heparin and 1 ml was transferred to a vial containing 1 ml of water
and 100 �l of TERT-BUOH.

Blood samples (8 ml) for the analysis of COC and its metabolites

were also obtained at 0, 35, 42, 51, 59, 72, 87, 105, 120, 150, 180, 240,

300, 360, 510 and 1440 mm after beverage administration (or -30, 5,

7, 21, 29, 42, 57, 75, 90, 120, 150, 210, 270, 330, 480 and 1410 mm after
powder snorting). Blood samples for the analysis of unchanged COC
were collected in tubes containing 100 � of citric acid and 200 zl of a

saturated solution of sodium fluoride as enzymatic inhibitor and chilled

until centrifugation (Baselt 1983; Isenschmid et aL, 1989). Plasma
samples were separated and stored at -20’C until analysis.

Drug analysis. Blood alcohol levels were measured by gas-liquid
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chromatography using a head-space injection technique and flame

ionization detection (Hewlett-Packard 19395A), which permitted meas-
urement of ETOH down to levels of 60 ��g/ml (four times the signal-

to-noise ratio). Separation was carried out using a cross-linked capillary

column (ref. RSL-160) 5 m long x 0.530 mm external diameter (0.33

�m film thickness).
Standard curves for calibration were prepared with blank human

blood over the concentration range of 79 to 1580 zg/ml for ETOH.
Peak-height ratios between ETOH and the internal standard (TERT-
BUOH) were subjected to least square regression analysis. Good line-

aMy of the height ratio (x) of the internal standard vs. concentration
(y) was obtained over the ranges studied (r = 0.999, y intercept = 16,

slope = 835) for ETOH. Between-day coefficients ofvariation of control

blood samples (n = 5) were 7.57, 1.21 and 0.97% for 79, 197.5 and 1580

�ig/ml of ETOH levels, respectively.
Blood levels of COC and the metabolites BE, EME, NC and CE

were determined by gas chromatography coupled with mass spectrom-
etry. A gas chromatograph (Hewlett-Packard model 5890A) fitted with

an autosampler (model 7673A) was coupled to a mass selective detector
(model 5970). Separation was carried out using a cross-linked capillary
column (Hewlett-Packard) 25 m long x 0.2 mm external diameter, 5%

phenylmethyl silicone gum (0.33 �m film thickness). The mass spec-
trometer was operated by electron impact ionization (70 eV) and in the

single-ion monitoring acquisition mode. From electron impact ioniza-

tion mass spectra the following ions were selected for monitoring the
analytes grouped into five successive different acquisition groups: group

1 m/z 182 for EME; group 2 m/z 318 for BE; group 3 m/z 182 for COC;

group 4 m/z 196 and 313 for CE and NC, respectively and group 5 m/

z 331 for the internal standard, propylcocaine.
Bond Elut Certify (Varian, Harbor City, CA) columns were inserted

into a vacuum manifold and conditioned by washing once with 2 ml of
0.1 M phosphate buffer at pH 7. The columns were prevented from

running dry before applying the sample. Aliquots of 1 ml of plasma
were centrifuged at 3,000 g X 10 mm and transferred to clean polysty-

rene tubes to which 25 �tl (250 ng) of a methanolic solution of propyl-
cocaine and 1.5 ml of 0.1 M phosphate buffer (pH 7) were added.
Samples were poured into each column and gently sucked through. The

TABLE 1

columns were successively washed with 3 ml of deionized water, 3 ml

ofO.1 M hydrochloric acid and 9 ml ofmethanol. Elution ofthe analytes
was performed with 2 ml of a mixture of chloroform [isopropyl alcohol,

80:20 (v/v)] containing 2% ammonium hydroxide. The eluates were

collected and evaporated to dryness under a gentle nitrogen stream at
room temperature, and kept in a desiccator under vacuum for 2 hr
before derivatization of the residues. Penta.fluoropropionic anhydride

(80 �l) and 1,1,1,3,3,3-hexafluor-2-propanol (20 .tl) were added to the
dried residue and vortexed for 10 sec. The tubes were incubated at
60’C for 15 mm. After drying, the residues were redissolved in 50 �tl of
ethyl acetate and 2 � of the solution was injected into the chromato-

graphic system.

Standard curves for calibration were prepared with blank human

plasma over the concentration range of 50 to 500 ng/ml for COC and
EME, 50 to 1000 ng/ml for BE, 10 to 200 ng/ml for CE and 1 to 15

ng/ml for NC. The recoveries (mean ± S.D.; n = 4) were 98 ± 2% for

COC, 87 ± 5% for BE, 97 ± 3% for EME, 93 ± 7% for CE and 98 ±
2% for NC over their corresponding range of concentrations. Peak-
height ratios (x) between the analytes and the internal standard vs. the

concentration (y) were subjected to least squares regression analysis.

Good linearity (area ratio of the internal standard vs. concentration)
was obtained over the ranges studied (r = 0.999, y intercept = 0.104,

slope = 0.011 for COC; r = 0.997, y intercept = 1.005, slope = 0.036 for

BE; r = 0.997, y intercept = 0.720, slope = 0.030 for EME; r = 0.999, y
intercept = 0.03, slope = 0.010 for CE; r = 0.999, y intercept = -0.001,

slope = 0.023 for NC). The sensitivity (4 times the signal-to-noise

ratio) achieved for COC, BE, EME, CE was 1 ng/ml and 0.5 ng/ml for

NC. Between-day coefficients of variation of control blood samples (n

= 13, 70 ng/ml for COC, BE, EME; 20 ng/ml for EC and 2 ng/ml for
NC) ranged between 8.9% for COC to 17.7% for NC.

Data analysis. Data from all four drug conditions were analyzed

by repeated measures two-way ANOVA with drug condition and time

as factors. A second set of analyses was conducted using repeated
measures one-way ANOVA for peak drug effects (or peak changes from

baseline) with drug condition as the factor. Tukey’s post-hoc tests were

then used to compare all possible pairs of conditions. Pharmacokinetic

parameters evaluated were peak concentration (C,,,�), the time taken

Statistical results of physiological, subjective and psychomotor performance evaluations (peak effects)
Abbreviations used are: P, placebo cocaine/placebo alcohol; A, placebo cocaine/alcohol; C, cocaine/placebo alcohol; C/A, cocane
Tukey post-hoc condition comparisons: ‘ P < .05. N.S., not significant. If blank, not done (ANOVA not significant).

/a1cohc� ; CFF, crfticai flicker fusion.

F PVNi� P Vthie(3,24) C/A C A C/A

C

A

A

C/A

Heart rate 17.07 <0.0001 � * N.S. � N.S.
Systolic pressure 9.35 0.0003 � * N.S. N.S. *

Diastolic pressure 3.74 0.0245 � N.S. N.S. N.S. N.S.
High 9.40 0.0003 � #{149} N.S. N.S. *

Drunk 18.96 <0.0001 � N.S. * * N.S.
Any effect 9.25 0.0003 � * * * N.S. N.S.
Good effects 9.00 0.0004 � * N.S. � N.S.
Bad effects 4.18 0.0162 N.S. N.S. � N.S. N.S.
Liking 6.38 0.0025 � a N.S. N.S. N.S. a

Feeling good 8.13 0.0007 � N.S. � * N.S.
Energetic 5.33 0.0059 � N.S. N.S. N.S. N.S. N.S.
Better performance 4.47 0.0125 � N.S. N.S. N.S. N.S. N.S.
Worse performance 5.83 0.0039 � N.S. � N.S. N.S.
Clear-headed 5.83 0.0039 � N.S. N.S. N.S. N.S.
Content 7.64 0.0009 � N.S. � N.S. N.S.
Anxious 2.17 0.1183
Drowsy 8.23 0.0006 N.S. N.S. � N.S. *

Simple reaction time 17.90 <0.0001 N.S. N.S. a N.S. a a

Decision time 1 1.99 0.0001 N.S. a a N.S. a a

Motortime 29.13 <0.0001 a N.S. a a a a

CFF increasing 2.74 0.0658
CFFdecreasing 1.29 0.3019
Pauli (correct) 16.17 <0.0001 a N.S. � *

* N.S.
Maddox-Wing 20.73 <0.0001 a N.S. a a a N.S.
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a) Heart rate (bpm)

0 20 40 60 80 100 120 140 160 180

Time (minutes)

b) Systolic blood pressure (mmHg)
140-

130�

120�

110�

100�

AUC described in the literature from i.v. pharmacokinetic studies of

COC (Javaid et at., 1983). The bioavailability was used to estimate the

apparent volume of distribution ( Vd) and its plasma clearance (Cl,,) in
the presence and absence of ethanol.

Pharmacokinetic parameters were analyzed using a paired Student’s
t test and the Spearman correlation test. Results were considered
statistically significant at P < .05.

Results

Heart rate. Alcohol had no effects on heart rate. COC

produced an increase in heart rate in comparison with placebo.
The drug combination produced an increased heart rate in
comparison with placebo and COC, which was greater than

that produced by COC alone and had a duration of more than

3 hr. The peak difference between the conditions of COC and

placebo was 12 bpm, between placebo and the drug combination

33 bpm and between COC and the drug combination 21 bpm.

Blood pressure. Alcohol did not produce effects on blood

pressure. COC caused an increase in systolic blood pressure as

compared with placebo. The drug combination produced in-
creases in systolic and diastolic blood pressure in comparison

with placebo or alcohol. The peak difference in systolic blood
pressure between COC and placebo conditions was 15 mm Hg,

and between placebo and the drug combination conditions was

16 mm Hg. The peak difference in diastolic pressure in com-

parison with placebo was 12 mm Hg for the drug combination
and 10 mm Hg for COC.

Cardiovascular effects after the administration of alcohol,
COC, placebo or the drug combination are shown in table 1

and figure 1.

Subjective effects. Increases in the ratings of drunk, any
effect, bad effects, feeling good, worse performance, content

and drowsy scales were found when alcohol was given as corn-
pared with placebo. COC produced increases in the ratings of
high, any effect, good effects and liking and the drug combi-

nation in those of high, drunk, any effect, good effects, liking,
feeling good, energetic, better performance, worse performance,
clear-headed and content as compared with placebo (table 1,

fig. 2).

Ratings for the COC and the drug combination conditions
were statistically different in the scales of drunk, any effect,
good effects and feeling good with higher scores in the drug

combination condition. The combination condition differed

from the alcohol condition in the scales of high, good effects,
liking, feeling good, energetic and clear-headed.

Psychomotor performance. In the simple reaction time,
alcohol produced an increase in the total time, decision time
and motor time in comparison with placebo (table 1, fig. 3).

COC significantly improved the decision component of simple

reaction time in comparison with placebo. This improvement
was more marked at 90 mm. The drug combination attenuated

the deleterious effect of alcohol in the simple reaction time
(total, decision and motor). This effect was particularly evident
at 45 mm. Although with the drug combination the subjects

had a faster response in comparison with alcohol, their response
speed was less than under the placebo or COC conditions.

In the analysis of the increasing and decreasing modes of the
critical flicker fusion frequency, no differences were found
between drug conditions (table 1).

In the Maddox-Wing device, the conditions of alcohol and
the drug combination increased the degree of exophoria in

comparison with those of placebo and COC. COC produced no

0 20 40 60 80 100 120 140 160 180

Time (minutes)

C) Diastolic blood pressure (mmHg)

0 20 ‘IC) 1() 80 100 120 1 ‘1() I 10 180

I irnt’ (rninutc’s)

Fig. 1. Effects (mean, n = 9) of the four conditions studied on heart rate
(a), systolic (b) and diastolic blood pressure (c). Symbols: �, cocaine-
aicohol condition; U, cocaine condition; I, alcohol condition; #{149},placebo
condition.

to reach the maximum concentration (T,,,�), and AUC from 0 to 360
(AUC�) or 480 mm (AUC�) which was calculated by the trapezoi-
dal rule. The AUC from 0 to mnfmite (AUC�) was estimated by
AUC�OUJ AUCO�O + C�/kel, where C,, was the last experimental
plasma level and “kel” the first order elimination constant. Plasma
clearance (Cl,,) and kel were estimated using an stripping computing
program (Schumaker, 1986). The bioavailability of COC was estimated

by comparison of the AUC calculated for the COC condition to other
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Time (minutes)
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e) Good effects
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Time (minutes)
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Time (minutes)

50 0 Fe�Ing good

0 3060
Time (minutes)

1368 Farr#{233}etal. Vol.266

20

90 120 150 180 210 240

Time (minutes)

d) Uking

FIg. 2. Effects (mean, n= 9) of the four conditions studied on selected visual analog scales used for subjective effects evaluation: (a) high, (b) drunk,
(c) any effect, (d) liking, (e) good effects, (f) feeling good. Symbols as in figure 1.

changes in exophoria, with diopter values similar to those
obtained with placebo. No differences were found between the
drug combination and alcohol conditions.

In the Pauli test, alcohol impaired performance producing a

reduction in the number of correct responses (table 1, fig. 3).

COC had no effect on this task, the total number of responses

being similar to those obtained with placebo. Although the drug
combination counteracted in part the effects of alcohol in this
task, this effect did not reach statistical significance. However,

performance under the drug combination was worse than under

placebo or COC alone.
Pharmacokinetic data. When the two conditions contain-

ing alcohol were compared (table 2, fig. 4), no significant

differences were found in the pharmacokinetic parameters ex-
cept for Cmax. During the first hour of the kinetic study, blood

ETOH levels were slightly higher in the alcohol condition when

compared with the condition receiving the drug combination.
Plasma levels of COC in the drug combination condition
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a) Simple Reaction Time (msec)
480

430

380

330

Alcohol and Cocaine Interactions 1369

TABLE 2

Pharmacokinetic parameters for alcohol
Abbreviations used are: A, alcohol; C/A, cocaine/alcohol; N.S., not significant.
Values are mean ± S.D.; n =9.

ug/ml

-30 -15 0 15 30 45 60 75 90 105

Time (minutes)

b) Decision time (msec)

1400-

1200-

1000-

800-

600-

400-

200�

300

280

260

240-

220

200

170

160

150

140

130

0 � 50 100 150 200 250 300 350 400 450 500

C) Pauli test: correct responses

-30 -15 0 15 30 45 60 75 90 105

Time (minutes)

-30 -15 0 15 30 45 60 75 90 105

Time (minutes)

Fig. 3. Effects (mean, n = 9) of the four conditions studied on selected
measures of psychomotor performance: (a) simple reaction time, (b)
decision time, (c) pauli test. Symbols as in figure 1.

were higher than in the COC condition as reflected on AUCo

480, AUC� and C,� values (table 3, fig. 5). This finding was
observed in each of the nine subjects. The bioavailability of
cocaine was 0.8. There was a significant reduction in both Cl,,

and Vd in the condition receiving the drug combination when
compared with the COC condition (CI,,, 1,424 vs. 2196 ng/ml/

mm, P < .04; Vd 153.1 ± 45.2 vs. 238 ± 81.9 liters, P < .03). A

significant difference of approximately 20 mm in Tm� was

A C/A P

Cmax (�g/ml) 1276.6 ± 225.5 1 127.9 ± 204.4 .04
T� (mm) 68.2 ± 20.4 71 .2 ± 26.1 N.S.
AUCi�..�i (pg. 269550.0 ± 56784.0 254916.2 ± 44910.9 N.S.

mm/mi)

Time (minutes)

Fig. 4. Time course for mean (n= 9) blood alcohol levels of the two
alcohol conditions (symbols as in fig. 1). The zero (0) time of the curve
stands for the moment when alcohol administration started. The arrow
signals cocaine administration.

found between the two conditions, with the peak occurring

earlier in the drug combination condition. No differences were

found in the elimination half-life values.

Plasma levels of BE were significantly higher in the COC
condition than in the condition receiving the drug combination

as reflected in the AUC�.4ro (table 3, fig. 5). Cmax values were
also higher in the COC condition. No differences were found

between conditions in the elimination half-life and T,,,�.

No differences were found in any of the pharmacokinetic

parameters derived from EME plasma concentrations. Never-

theless, a similar trend of higher plasma levels in the COC

condition as occurred with BE was also observed.

Plasma levels of NC in the drug combination condition were
higher than in the COC condition as reflected in AUCo�o,

AUC� and C� values. Taking into account the high sensi-

tivity reached in the assay for the quantification of NC, it
should be noted that although NC was detected in all volunteers

when receiving the drug combination, this substance was meas-

urable only in six of the participants in the COC condition. In
all participants, plasma concentrations of NC where higher in

the drug combination condition.

The metabolite CE was present only in the condition receiv-
ing the drug combination. The plasma half-life of 99 mm was
slightly higher than that of 78 mm for COC (P < .0005). When

AUC� of COC and CE were compared, plasma levels of CE
accounted for about one-fifth of those calculated for COC.

There was a significant correlation between AUC of CE and
AUC of COC and of BE (r = 0.90; P < .01) as well as between

the elimination half-life of COC and of CE (r = 0.96; P < .02).

Time courses for mean plasma levels of COC, BE, EME, NC
and CE are shown in figure 5.
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TABLE 3
Pharmacokinetic parameters for cocaine and metaboiftes
Abbreviations used are: C, cocaine; C/A, cocaine/aicohol; N.S. not significant. Values are mean ± S.D.; n =9.

Parameters
Coc�r* Benzoy1ecgonE�e Ecgor�nemeth)1est& Norcocaine Cocaethylene

C C/A P C C/A P C C/A P C C/A P C/A

Cn,sa (ng/ml) 225.9
±80.7

343.8
±93.5

0.008 778.0
±388.4

537.4
±153.9

N.S. 129.8
±80.8

86.2
±44.5

N.S. 1.5
±1.4

3.5
±1.7

0.02 53.3
±12.2

T,,,,(mln) 58.2
±18.1

37.9
±16.9

0.04 213.3
±112.6

186.7
±59.6

N.S. 128.3
±36.0

131.6
±65.3

N.S. 130.0
±74.5

107.0
±54.5

N.S. 121.7
±37.7

AUC (0-480)’ (ng. 38353.8 54037.0 0.008 239685.1 165292.9 0.01 30583.1 22793.5 NS. 263.6 592.7 0.007 13331.8
mm/mi) ±16190.1 ±19152.8 ±97405.0 ±52922.1 ±19855.1 ±14446.4 ±255.0 ±199.2 ±4519.5

t�(min) 79.8
±28.7

78.0
±22.5

N.S. 466.6
±142.7

504.8
±150.4

N.S. 147.8
±39.8

197.1
±122.4

N.S. 196.2
±114.0

172.1
±48.6

N.S. 99.1

±23.9
AUC(1,,�) (ng.min/

ml)
40577.0

±17565.0
55559.0

±21953.0
0.01 557695.0

±249208.0
434357.0

±177495.0
N.S. 40573.0

±26731 .0
35817.0

±21867.0
N.S. 625.0

±76.0
894.0

±328.0
0.06 14517.9

±5532.4

a AUC for norcocaine was calculated between 0 and 330 mm.
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Discussion

In the present study we obtained valuable information about

the interactions between COC and alcohol and their effects on
heart rate and blood pressure, subjective effects, psychomotor
performance and pharmacokinetic parameters.

The alcohol dose (1 g/kg) used in this study produced char-
acteristic effects in subjective and performance parameters. No

significant changes were found in heart rate or blood pressure

as compared with placebo. Alcohol-impaired psychomotor per-

formance (increasing simple reaction time) diminished the

number of correct responses in an arithmetical task and in-
duced exophoria. These results are in agreement with obser-
vations made by other authors using similar methods of eval-

uation (Turkkan et a!., 1988; Heishman et at., 1989).
The COC dose (100 rng snorted) used also produced some of

the previously reported effects on subjective variables and heart
rate and blood pressure using the same route of administration

(Resnick et al., 1976). COC increased heart rate and blood

pressure. The increase in the heart rate observed had a duration
of 1 hr, similar to that previously reported (Resnick et a!.,
1976). Higgins et aL, (1990) have recently described an increase
in heart rate during 3 hr after a single 96-mg dose of COC. This

difference is probably due to repetitive performance testing

(Foltin et ci., 1988).

COC increased subjective effects related to euphoria and
well-being. In relation to psychomotor performance, COC in-
creased the speed of decision time (alertness). The observation
seems more relevant when some degree of fatigue is present (at
the 90-mm evaluation), at this time COC could help to re-

establish the performance to baseline values. The results are in
agreement with previous observations published by Higgins et

a!., (1990) that COC can enhance psychomotor performance in
rested subjects. Fischman and Schuster (1980) reported that

COC only affected reaction time when administered to sleep-

deprived subjects during 24 hr. In rested subjects, a trend for

an improvement in reaction time was observed, although it was
not statistically significant.

The combination of COC and alcohol produced a clinically

significant increase in the heart rate when compared with
placebo and COC. Increases in systolic and diastolic blood

pressure were similar in the two conditions that included COC.

These results are in accordance with a previous report using

the combination of alcohol and COC (Foltin and Fischman,

1989). The magnitude of the changes observed in heart rate
and blood pressure could have toxicologic consequences. Sub-

jects using the drug combination could be at greater risk of

cardiovascular complications than users of COC alone.

The simultaneous use of COC and alcohol produced more
marked subjective effects than COC or alcohol alone. Although

participants had the subjective feeling of a decrease in their
degree of alcohol intoxication and an increase in COC-induced

euphoria, differences were not statistically significant. The drug
combination seems to produce a profile of more pronounced
subjective effects than cocaine, with significant differences in

ratings of some feelings related to well-being (feeling good, good
effects). This observation could indicate that the combination

of alcohol and COC would be more liable to abuse than alcohol
or COC.

COC significantly improved performance impaired by alcohol
in the simple reaction time test. Effects peaked at the 45 mm

evaluation (15 mm after COC snorting). This observation could
have relevance in driving situations and has not yet been

described. The possible role of COC in driving impairment

induced by alcohol should be further assessed in adequate

driving simulation studies.
Blood alcohol levels were marginally lower in the first hour

of the kinetics in the drug combination condition. Differences

in the rate of alcohol absorption due to COC cardiovascular
effects could explain this finding. The amount of alcohol in-

volved in CE synthesis cannot account for the differences in
ETOH levels.

With regard to the pharmacokinetics of COC, a relevant

finding of the present study is that COC plasma levels were
higher in those to whom alcohol was administered. This fact is

supported by higher COC AUC and C� in the drug combina-
tion condition. In contrast, AUC and Cm� of BE and EME
were lower in this condition. When combining these observa-

tions with the absence of differences in the COC elimination
half-life and reduction by half of its plasma clearance, there is

strong support for hypothesizing a metabolic inhibition in the

metabolism of COC in the presence of alcohol. The maximal
effect on COC metabolic inhibition is observed when alcohol

reaches its Cmaz. The mechanism involved in this interaction

remains unclear. Both the spontaneous and enzymatic hydrol-
ysis of COC (Inaba et at., 1978; Inaba, 1989; Dean et at., 1991)
are partially inhibited in the presence of alcohol. In the case of
spontaneous hydrolysis (leading to BE), it has been reported

that this process can be altered in vitro by changes in the
environmental pH (Baselt, 1983; Isenschmid et at., 1989).
Nevertheless, despite the fact that metabolic acidosis has been

described in acute alcohol intoxication (Rumack et at., 1986),

it seems unlikely that small changes in blood pH could be

responsible for the differences observed. Two recent reports
suggest that hepatic nonspecific carboxylesterase is involved in
the degradation of COC to BE (Dean et at., 1991; Boyer and
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Fig. 5. Time course for mean (n= 9) plasma concentrations of (a) cocaine, (b) benzoylecgonine, (C) ecgonmnemethylester, (d) norcocaine and (e)
cocaethylene in the two cocaine conditions. Symbols as in figure 1 . The zero (0) time of these curves stands for the moment when cocaine were
administered.

Petersen, 1992). The same enzyme catalyzes the transesterifi-

cation of COC to CE in the presence of alcohol. If both
metabolic reactions are regulated by the same enzyme, it may
be proposed that a competitive mechanism would explain our
findings with regard to BE plasma levels.

A small difference (20 mm) in COC T,nax has been detected

with the absorption of COC being faster in the drug combina-
tion condition. This fact could point to a vasodilation of the

nasal mucosa because of the presence of alcohol. On the other

hand, an increased bioavailability of COC in the presence of
alcohol may be suggested. The sum of AUCo�o of COC and its

main metabolites, as an index of the total bioavailability of

COC, does not show substantial differences between the drug
combination condition and COC alone (256048 vs. 308886 ng.

min/ml). The relevance of the slight difference observed in
absorption rate is then meaningless when compared with the
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metabolic interaction previously discussed. Moreover, the high
rate of hepatic extraction of COC prevents any significant
modification of its body clearance as a result of the diuretic

effect of alcohol. The results obtained do not, therefore, seem
to support renal impairment.

The kinetics of NC in plasma is one of the first described in
humans, and has been made possible thanks to the high sensi-
tivity and specificity of the assay used. The method developed

is based on previous studies for the urinalysis of COC in drug
screening testing (Ortu#{241}oet al., 1990).

A major finding has been that NC plasma levels in the drug

combination condition almost doubled those encountered in
the COC condition, as reflected in Cmaz and AUC values. As
has been stated previously, it is again worth pointing out that,
although in the COC condition the plasma levels of NC in three
volunteers were below the detection limit of the analytical

technique, NC was detected in all the volunteers in the drug
combination condition. An isozyme of the cytochrome P4� is
responsible for the COC-N-demethylation to NC (Kloss et at.,
1983). It seems probable that increased availability of the

substrate for this metabolic reaction, i.e., higher levels of COC

in the drug combination condition, would be responsible for

the higher levels of NC observed. No inhibitory effect of alcohol
on cytochrome P�o has been observed for COC-N-demethyla-

tion in contrast to some reports for other metabolic reactions
with other drugs (Sandor et at., 1981). The reduction in the

time lag observed for the detection of NC in the drug combi-
nation condition is in agreement with differences observed for

COC Tmax and support the previous hypothesis.
COC can be responsible for hepatotoxicity in laboratory

animals and in man (Shuster et at., 1988). A metabolic activa-
tion of COC via NC by multiple oxidative steps mediated by

cytochrome P4� seems to be necessary to obtain hepatotoxic
responses (Rauckman et at., 1982; Shuster et a!., 1983). Al-
though the plasma levels of NC are low, their hepatotoxicity
deserve further studies. Furthermore, the differences observed
in NC concentrations between COC and the drug combination
conditions could give support to observations of an increased
hepatotoxicity of COC when coadministered with alcohol in
laboratory animals (Boyer and Petersen, 1990).

The detection of plasma concentrations of CE in healthy
volunteers confirms preliminary results in urine (de la Torre et

a!., 1991) on the relevance of this active metabolite when COC
and alcohol are concurrently given. In most of the previous
studies, CE has been detected in acute COC intoxications or in
fatal casualties where alcohol was present (Rafla and Epstein,

1979; Jatlow et a!., 1991). The present study shows that CE can
be generated at doses compatible with the recreational con-
sumption of COC and alcohol. It has been suggested that CE
is generated by a transesterification of COC in the presence of
alcohol (Hearn et at., 1991; Dean et at., 1991). We studied the

correlation between AUC of CE and those of COC and BE in
order to relate these two hypothetic substrates of CE with to
possible metabolic reactions: transesterification of COC or es-
terification of BE. Our results of a significant correlation be-

tween AUC of CE and AUC of COC and of BE support the
metabolic pathway of transesterification of COC to CE in the
presence of alcohol.

The findings presented in this study are the first description
of the pharmacokinetics of CE in man, and should be consid-
ered when interpreting results of COC and alcohol coadminis-
tration. The values for the pharmacokinetic parameters may

well be slightly different in the case of direct administration of
synthetic CE to humans. The observation that the elimination
half-life of CE is slightly greater than that calculated for COC

can be explained by differences in the liposolubility of both
substances. There was a good correlation between the elimi-
nation half-life of COC and CE suggesting that both substances
share the same clearance process. Based on the pharmacologic

profile of CE (Hearn et a!., 1991; Jatlow et at., 1991), it is

tempting to speculate that this substance may be partially

responsible for more substained effects of COC in its interac-
tion with alcohol.

The increase in the pharmacologic effects of COC when given

simultaneously with alcohol could be related to higher COC

plasma levels in the drug combination condition. However,
changes observed seem lower than those expected on a quan-

titative basis considering that the sum plasma levels of COC
and its active metabolites (CE and NC) in the drug combination
condition almost doubled those found in the COC condition.
This could be explained by the development of acute tolerance
to the effects of COC (Chow et at., 1985; Ambre et at., 1988).

In conclusion, subjects taking recreational doses of alcohol

and COC simultaneously experienced subjective and perform-

ance effects that can be self-interpreted as more pleasant
compared to the effects of alcohol alone. However, the coad-

ministration of these drugs gives rise to the presence of CE and
higher levels of COC and NC in plasma. These changes could

contribute to the increased toxicity of the drug combination in

comparison with the effects of both drugs taken separately.
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